APPLICATION OF GEORGIAN NATURAL ANALCIME FOR PRODUCTION OF ION EXCHANGERS
PDF

Як цитувати

Tsitsishvili, V., Dolaberidze , N., Nijaradze, M., Mirdzveli, N., Amiridze, Z., Sharashenidze, T., & Gabunia, V. (2021). APPLICATION OF GEORGIAN NATURAL ANALCIME FOR PRODUCTION OF ION EXCHANGERS. InterConf, (49), 574-585. https://doi.org/10.51582/interconf.7-8.04.2021.062

Анотація

Analcime is a fairly widespread zeolite in the territory of Georgia and other countries, but its practical application is limited due to the peculiarities of its compact structure with small pores and irregular channels. This work describes a method developed by us for hydrothermal recrystallization of analcime into a widely used ion exchanger of the LTA type in the form of micrometric crystals or nanosized crystals, depending on the synthesis conditions. Silver-, copper-and zinc-containing analcimes and synthetic LTA zeolites with bacteriostatic activity were obtained by ion exchange. It has been shown that the highest bacteriostatic activity is possessed by a silver-containing synthetic zeolite, and analcimes enriched with relatively cheap copper and zinc exhibit activity sufficient for practical use in water treatment, paper production and other applications.

https://doi.org/10.51582/interconf.7-8.04.2021.062
PDF

Посилання

Li, Y., Li, L., Yu, J. (2017) ‘Applications of zeolites in sustainable chemistry’. Chem, 3, p928-949.

Bacakova, L., Vandrovcova, M., Kopova, I., Jirka, I. (2018) ‘Applications of zeolites in biotechnology and medicine – a review’. Biomaterials Sci., 6, p974-989.

Skhirtladze, N. (1997) Genetic groups of Georgian zeolites, their main deposits and manifestations, Tbilisi : Tbilisi State University.

Baerlocher, Ch., McCusker, L.B., Olson, D.H. (2007) Atlas of zeolite framework types, 6th revised edition. Amsterdam: Elsevier.

Mallah. M.H., Soorchi. H., Jooybari. T.F. (2012) ‘Development of empirical equation for analcime in the treatment of nuclear waste’. Annals of Nuclear Energy, 47, p140-145.

Tsitsishvili, V., Dolaberidze, N., Urotadze, S., Alelishvili, M., Mirdzveli, N., Nijaradze, M. (2017) ‘Ion exchange propeties of Georgian natural zeolites’. Chemistry Journal of Moldova, 12, p95-101.

Shoumkova, A., Stoyanova, V. (2013) ‘SEM–EDX and XRD characterization of zeolite NaA, synthesized from rice husk and aluminium scrap by different procedures for preparation of the initial hydrogel’. Journal of Porous Materials, 20(1), p249-255.

Gougazeh, M., Buhl, J.-Ch. (2014) ‘Synthesis and characterization of zeolite A by hydrothermal transformation of natural Jordanian kaolin’. Journal of the Association of Arab Universities for Basic and Applied Sciences, 15, p35-42.

Tsitsishvili, V., Dolaberidze, N., Alelishvili, M., Nijaradze, M., Mirdzveli, N. (2016) ‘New generation zeolitic adsorbers’. Proc. Georgian Nat. Acad. Sci., chem. ser., 42(3), p133-137.

Tsitsishvili, V., Dolaberidze, N., Mirdzveli, N., Nijaradze, M., Amiridze, Z., Gabunia, V., Tsintskaladze, G. (2019) ‘Hydrothermal transformation of natural analcime and phillipsite’. Bull. Georgian Acad. Sci., 13(1), p66-73.

Milenkovic, J., Hrenovic, J., Matijasevic, D., Niksic, D., Rajic, N. (2017) ‘Bactericidal activity of Cu-, Zn-, and Ag-containing zeolites toward Escherichia coli isolates’. Environmental Science and Pollution Research, 24(6), p20273-20281.

Demirci, S., Ustaoğlu, Z., Yılmazer, G.A., Sahin, F., Baç, N. (2014) ‘Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms’. Applied Biochemistry and Biotechnology, 172(3), p1652-1662.

Tsitsishvili, V., Dolaberidze, N., Mirdzveli, N., Nijaradze, M., Amiridze, Z. (2019) ‘Bactericidal adsorbents obtained by ion exchange modification of natural phillipsites’. Chemistry, Physics and Technology of Surface, 10(4), p327-339.

Rivera-Garza, M., Olguin, M.T., Garcia-Sosa, I., Alcantara, D., Rodriguez-Fuentes, G. (2000) ‘Silver supported on natural Mexican zeolite as an antibacterial material’. Microporous and Mesoporous Materials, 39, p431-444.

Top, A., Ülkü, S. (2004) ‘Silver, zinc, and copper exchange in Na-clinoptilolite and resulting effect on antibacterial activity’. Applied Clay Science, 27(1-2), p13-19.

Hrenovic, J., Milenkovic, J., Ivankovic, T., Rajic, N. (2012) ‘Antibacterial activity of heavy metal-loaded natural zeolite’. Journal of Hazardous Materials, 201-202(1), p260-264.

Persson, I. (2010) ‘Hydrated metal ions in aqueous solution: How regular are their structures?’ Pure and Applied Chemistry, 82(10), p1901-1917.

Mulley, G., Jenkins, A.T.A., Waterfield, N.R. (2014) ‘Inactivation of the antibacterial and cytotoxic properties of silver ions by biologically relevant compounds’. PLoS ONE, 9(4), pe94409.

Navarro, C.A., von Bernath, D., Jerez, C.A. (2017) ‘Heavy metal resistance strategies of acidophilic bacteria and their acquisition: Importance for biomining and bioremediation’. Biological Research, 46(4), p363-371.

World Health Organization. (2003) ‘Copper in drinking-water. Zinc in drinking-water’. Background documents for preparation of WHO Guidelines for drinking-water quality. World Health Organization, WHO/SDE/WSH/03.04/88 and 03.04.17, Geneva.

Creative Commons License

Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.

Завантаження

Дані завантаження ще не доступні.

| Переглядів: 31 | Завантажень: 25 |