Viktor Melnikov
Anara Umurzakova
Yermek Isenov
Rinat Bayzakov


The article considers the issues related to the development of energy technologies based on trigeneration with the use of fuel cells, which is expedient to use for additional generation of electrical energy. The possibilities of fuel cells to integrate them into traditional energy systems are shown; technological schemes using PEMFC, PAFC, and MCFC fuel cells are given. Maintaining a stable operating mode depends on temperature stability, so models of heat exchange processes are given and calculations of dynamic parameters for process stabilization under various external influences and dynamic control correction schemes are presented. The tools MatlabSimulink are used as a research tool.


Дані завантаження ще не доступні.


Як цитувати
Melnikov, V., Umurzakova, A., Isenov, Y., & Bayzakov, R. (2021). DYNAMIC CONTROL OF HEAT EXCHANGE PROCESSES FOR TRIGENERATION POWER SYSTEMS WITH FUEL CELLS. InterConf, (58), 217-234. https://doi.org/10.51582/interconf.21-22.05.2021.025
Біографії авторів

Viktor Melnikov, Innovative Eurasian University

PhD, Professor

Anara Umurzakova, Innovative Eurasian University

PhD, Professor

Yermek Isenov, Innovative Eurasian University

MSc in Energy, PhD Student

Rinat Bayzakov, Innovative Eurasian University

MSc Student


1. I. Zamora, J.I. San Martín, A.J. Mazón, J.J. San Martín, V. Aperribay, J.Ma Arrieta, “Cogeneration in Electrical Microgrids”, International Conference on Renewable Energy and Power Quality, Spain, 2006.
2. I. Pilatowsky, R. J. Romero, C. A. Isaza, S. A. Gamboa, W. Rivera, P. J. Sebastian, J. Moreira, “Simulation of an Air Conditioning Absorption Refrigeration System in a Cogeneration Process Combining a Proton Exchange Membrane Fuel Cell”, International Journal of Hydrogen Energy,
3. Cocchi A., Andreini P. & Cassitto L., et al. 2015. Thermodynamic transient simulation of a combined heat & power system. Energy Procedia, 2015, 81: 505-515.
4. Cristian Dragoş Dumitru & Gligor A. 2010. Modeling and simulation of renewable hybrid power system using Matlab Simulink environment. Scientific Bulletin of the ''Petru Maior" University of Târgu Mureş, 7(2): 1841-9267.
5. MIT (Massachusetts Institute of Technology), The Future of Coal in a Carbon Constrained World, http://mit.edu/coal, (2007).
6. Hanes, R.J.; Bakshi, B.R. Process to planet: A multiscale modeling framework toward sustainable engineering. AIChE J. 2015, 61, 3332–3352. [CrossRef]
7. Deshmukh, M.K.; Deshmukh, S.S. Modeling of hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2008, 12, 235–249. [CrossRef]
8. Zeng, Y.; Cai, Y.; Huang, G.; Dai, J. A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty. Energies 2011, 4, 1624–1656. [CrossRef]
9. Lophaven, S.N.; Nielsen, H.B.; Søndergaard, J. DACE: A Matlab Kriging Toolbox; Technical Report; Technical University of Denmark: Lyngby, Denmark, 2002.
10. Watson, H.A.; Khan, K.A.; Barton, P.I. Multistream heat exchanger modeling and design. AIChE J. 2015, 61, 3390–3403. [CrossRef]
11. Jana, K.; Ray, A.; Majoumerd, M.M.; Assadi, M.; De, S. Polygeneration as a future sustainable energy solution - A comprehensive review. Appl. Energy 2017, 202, 88–111. [CrossRef]