PRELIMINARY SUBSTANTIATION OF ADVANCED DIRECTIONS OF MODERNIZATION OF COAL-FIRED POWER PLANTS TO IMPROVE EFFICIENCY
PDF

Як цитувати

Melnikov, V., & Isenov, Y. (2021). PRELIMINARY SUBSTANTIATION OF ADVANCED DIRECTIONS OF MODERNIZATION OF COAL-FIRED POWER PLANTS TO IMPROVE EFFICIENCY. InterConf, 295-314. https://doi.org/10.51582/interconf.7-8.06.2021.032

Анотація

The article considers issues related to the modernization of coal-fired power technologies. To increase the efficiency of energy resources, operational reliability, loss reduction and environmental safety the possibilities of trigeneration are considered with application of fuel cells, hydrogen technologies and RE-components that are expedient to use for additional electric energy production. The possibilities of innovative energy components to integrate them into traditional power generation systems are shown, technological schemes are given.

https://doi.org/10.51582/interconf.7-8.06.2021.032
PDF

Посилання

Ciferno, J.P., P. DiPietro and T. Tarka, “An economic scoping study for CO2 capture using aqueous ammonia,” Final Report, National Energy Technology Laboratory, US Department of Energy, Pittsburgh, PA, (2005).

Hamilton, M.R., H.J. Herzog and J.E. Parsons, “Project financing of new coal power plants with carbon capture and sequestration,” Proceedings of the 9 International Conference on Greenhouse Gas Control, in press, (2008).

Liu, P.; Pistikopoulos, E.N.; Li, Z. A multi-objective optimization approach to polygeneration energy systems design. AIChE J. 2010, 56, 1218–1234. [CrossRef]

Hasan, M.F. Multi-scale Process Systems Engineering for Carbon Capture, Utilization, and Storage: A Review. In Process Systems and Materials for CO2 Capture: Modelling, Design, Control and Integration; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017.

Tucker, D.; Shelton, M.; Manivannan, A. The Role of Solid Oxide Fuel Cells in Advanced Hybrid Power Systems of the Future. Electrochem. Soc. Interface 2009, 18, 45.

Watson, H.A.; Khan, K.A.; Barton, P.I. Multistream heat exchanger modeling and design. AIChE J. 2015, 61, 3390–3403. [CrossRef]

Adams, T.A., II; Barton, P.I. High-efficiency power production from coal with carbon capture. AIChE J. 2010, 56, 3120–3136. [CrossRef]

Kober, T.; Panos, E.; Volkart, K. Energy system challenges of deep global CO2 emissions reduction under the World Energy Council’s scenario framework. In Limiting Global Warming to Well Below 2◦C: Energy System Modelling and Policy Development; Springer: Berlin, Germany, 2018; pp. 17–

Bolat, P.; Thiel, C. Hydrogen supply chain architecture for bottom-up energy systems models. Part 2: Techno-economic inputs for hydrogen production pathways. Int. J. Hydrogen Energy 2014, 39, 8898–8925. [CrossRef]

Van den Broek, M.; Berghout, N.; Rubin, E.S. The potential of renewables versus natural gas with CO2 capture and storage for power generation under CO2 constraints. Renew. Sustain. Energy Rev. 2015, 49, 1296–1322. [CrossRef]

Reiner, D.M. Learning through a portfolio of carbon capture and storage demonstration projects. Nat. Energy 2016, 1, 15011. [CrossRef]

Adams, T.A., II; Hoseinzade, L.; Madabhushi, P.B.; Okeke, I.J. Comparison of CO2 Capture Approaches for Fossil-Based Power Generation: Review and Meta-Study. Processes 2017, 5, 44. [CrossRef]

Creative Commons License

Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.

Завантаження

Дані завантаження ще не доступні.

| Переглядів: 28 | Завантажень: 54 |