DETECTING CREDIT CARD FRAUD USING MACHINE LEARNING ALGORITHMS
PDF

Як цитувати

Shmatko, O., Fedorchenko, V., & Prochukhan, D. (2021). DETECTING CREDIT CARD FRAUD USING MACHINE LEARNING ALGORITHMS. InterConf, (71), 393-403. https://doi.org/10.51582/interconf.19-20.08.2021.037

Анотація

Today the banking sector offers its clients many different financial services such as ATM cards, Internet banking, Debit card, and Credit card, which allows attracting a large number of new customers. This article proposes an information system for detecting credit card fraud using a machine learning algorithm. Usually, credit cards are used by the customer around the clock, so the bank's server can track all transactions using machine learning algorithms. It must find or predict fraud detection. The dataset contains characteristics for each transaction and fraudulent transactions need to be classified and detected. For these purposes, the work proposes the use of the Random Forest algorithm.

https://doi.org/10.51582/interconf.19-20.08.2021.037
PDF

Посилання

Chirkov E. Classification of fraud committed with the use of modern information technologies (computer networks-cyber fraud) // Problems and challenges of the regional economy in the context of globalization. - 2020 .-- S. 307-313.

Poimanova LA Fraud in the banking sector: concept, signs, types // Siberian legal bulletin. - 2018. - No. 2.

John S.N., Okokpujie Kennedy O., Anele C., Olajide F., Chinyere Grace Kennedy (2016). Realtime fraud detection in the banking sector using data mining techniques / algorithms. 2016 International conference on computational science and computational intelligence (CSCI). P. 1186-1191. DOI: 10.1109 / CSCI.2016.223

Kurt Fanning, Kenneth O. Cogger (1998) Neural network detection of management fraud using published financial data. Intelligent systems in accounting, finance, and management. Volume 7, issue 1. P. 21–41

Zuraidah Mohd Sanusi, Mohd Nor Firdaus Rameli, Yusarina Mat Isa (2015) Fraud schemes in the banking institutions: prevention measures to avoid severe financial loss. Procedia economics and fnance. No. 28. P. 107-113

Maltseva SM et al. To the question of protection against financial cyber fraud // Azimuth of scientific research: economics and management. - 2020. - T. 9. - No. 2. - S. 332-324.

Udalova ZV, Stolbovoy VS Review of foreign experience in using the regression analysis method to identify fraud with financial reporting indicators // Accounting and statistics. - 2019. - No. 4. - S. 39-48.

Jarrod West, Maumita Bhattacharya, Rafgul Islam (2014) Intelligent financial fraud detection practices: an investigation. Proceedings of the international conference on security and privacy in communication networks. Volume 153. P. 186-203. DOI: 10.1007 / 978-3-319-23802-9_16

Levashov MV, Ovchinnikov PV Efficiency of classifiers for detecting fraud in financial transactions // Cybersecurity Issues. - 2019. - No. 5 (33).

Rinky D. Patel, Dheeraj Kumar Singh (2013) Credit card fraud detection & prevention of fraud using genetic algorithm. International journal of soft computing and engineering (IJSCE). Volume 2, issue 6. P. 292–294

Rinky D. Patel, Dheeraj Kumar Singh (2013) Credit card fraud detection & prevention of fraud using genetic algorithm. International journal of soft computing and engineering (IJSCE). Volume 2, issue 6. P. 292–294

MohdAvesh Zubair Khan, JabirDaud Pathan, Ali Haider Ekbal Ahmed (2014) Credit card fraud detection system using hidden Markov model and k-clustering. International journal of advanced research in computer and communication engineering. Volume 3, issue 2. P. 5458–5461

Creative Commons License

Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.

Завантаження

Дані завантаження ще не доступні.

| Переглядів: 70 | Завантажень: 38 |