ON THE TIME OF SYMBOLIC SIMULATION OF THE THEORY OF POPULATIONS OF FAMILIES OF SMALL BODIES IN NONLINEAR DYNAMIC SYSTEMS
PDF

Як цитувати

Arazov, G. (2021). ON THE TIME OF SYMBOLIC SIMULATION OF THE THEORY OF POPULATIONS OF FAMILIES OF SMALL BODIES IN NONLINEAR DYNAMIC SYSTEMS. InterConf, (80). вилучено із https://ojs.ukrlogos.in.ua/index.php/interconf/article/view/15276
PDF

Посилання

Paul H Frampton, 2010. Did time begin? Will time end? World Scientific, p.108.

Carey S.U.,1991. In search of the laws of development of the Earth and Universe, Moskva, Peace, p. 447

Sun Y.S., Zhou L.Y., 2016. From ordered to chaotic motion in Celestial Mechanics, Nanjing University, China, World Scientific, 405 p. Bogdanov S.V. 2011 Time. RAS Bulletin, t. 81. n. 5, p. 436-447.

Zavelsky FS 1977. Time and its measurement. M .: Science, p. 457.

Arazov G.T.2013. Time in mathematical modeling of dynamical system. News of Baku University. Physical-Mathematical sciences. N: 3,p.173-177.

Arazov G., AliyevaT.2018. Evolution of an Unstable Dynamical System in Mathematical Models of the Theory of Populations of Families of Small Bodies. World Journal of Applied Physics: 3(3) 51-53.

Arazov G.T. and Aliyeva T.H., 2015, Advances in Research, Chaos and Boundary Values Problems of Mathematical Models of Nonautonomous Dynamical Systems, p. 230-234.

Arazov G.T., Ganieva S.A., Novruzov A.G., 2006. Evolution of the external form and internal structure of the Earth, Baku, Elm, 193 p

Arazov G.T., 2020. Time inmathematical simulations of the theory of population of observed families of small bodies in non-linear dynamic systems,SCIENTIFIC COLLECTION «INTERCONF»/ № 1(37), ASTRONOMY, SPACE AND AVIATION,p. 668-671.

Jacobi K., 1936. Lectures on dynamics, ONTI.

Arazov G.T., 2021, Time in symbolic simulations of the theory of populations of families of small bodies in nonlinear dynamical systems Scientific potential., № 1, (32), p..18- 20 ISS№ 2218.7774.

Arazov GT, Instantaneous variability of time in populations of families of small bodies in nonlinear dynamical systems .ISSN 2310-9319, Proceedings of the XV International Scientific Conference. (ideas, resources, solutions) May 31, 2021. p. 7-9.

Creative Commons License

Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.

Завантаження

Дані завантаження ще не доступні.

| Переглядів: 3 | Завантажень: 3 |