Można wyciągnąć takie wnioski, że współczesne przedsiębiorstwa za swój podstawowy cel stawiają sobie odpowiedni dobór personelu. Z tego też względu rekrutacja odbywa się na bardzo rygorystycznych zasadach, tak aby nowo pozyskani pracownicy przynieśli przedsiębiorstwu jak najwięcej korzyści.

Literatura:

DOI 10.36074/18.09.2020.v1.03

STRUCTURAL-MATHEMATICAL MODEL FOR ASSESSING THE INVESTMENT ATTRACTIVENESS OF AN INNOVATIVE PROJECT

RESEARCH GROUP:
Andriy Semenov
Doctor of Economics, Professor, Head of the Department of Economics
Classic Private University

Iryna Hnatenko
Candidate of Economics, Associate professor, Doctoral student
Kyiv National University of Technologies and Design

Viktoria Rubezhanska
Candidate of Economics, Senior Lecturer of the Finance, Accounting and Banking Department
Luhansk Taras Shevchenko National University

Oleksiy Patsarniuk
Postgraduate student
Kyiv National Economic University named after Vadym Hetman

Oleksandr Solod
Postgraduate student
Poltava State Agrarian Academy

UKRAINE

The large-scale innovation is needed to maintain competitiveness and high economic growth, and large investments are needed to innovate. In a market economy, investments are made mainly on a commercial basis with a focus on profits. However, when investing in innovations (innovation projects), the private investor faces increased investment risk and therefore needs reliable methods of investment evaluation and investment modeling of innovations in industrial enterprises. In this regard, there is an urgent scientific task to improve methods of evaluation and modeling of investment activities of innovative industrial enterprises in order to
maintain their competitiveness, increase the level of their intellectualization, increase innovation, integration of science and production. Only the development of new methods for assessing and modeling investments in technological and product innovations, and improvement of the existing ones will solve the problem of technological modernization of industry, increase production of competitive innovative products, the transition to an innovative type of economic growth [1-5].

The review of experts’ opinions on the issue of investment support of innovations allows us to highlight the following features of investment in innovative projects: constant growth of the share of innovative investments in the total investment of firms; specialized nature of innovative investments, due to the specifics of the created assets; relatively long investment cycle and payback period, which increases the risk of a temporary gap between costs and results; low liquidity of the project in its intermediate stages; uncertainty of a positive R&D result; the difficulty of assessing the results obtained in the implementation of innovative projects [6-10].

Based on the above, the following conceptual structural-mathematical model for assessing the investment attractiveness of an innovative project is proposed, which is universal in nature and can be an element of any existing investment mechanism. A key aspect of the model is innovation risk management. The model is based on the calculation of the project advantage index according to the formulas of qualitative profit and risk indicators, first proposed by Ansoff, who considers the advantage index as the most acceptable integrated indicator of the investment attractiveness degree of an innovative project (1-7):

\[H = \frac{(M_t + M_b)}{(Cd + f) \times Mr} \times NPV \times Pt \times Pp \times S \times Z \times 100\% = f(NPV, Pt, Pp, S, Z)(max), \]
\[NPV = -I_0 + \sum_{i=1}^{T} \frac{FV_i}{(1+i)^t}, \]
\[i = r + w + \sum G_i, \]
\[Pt = (1 - R_1) + \cdots (1 - R_m) = f(R_1, \ldots R_m)(max), \]
\[Pp = (1 - R_1) + \cdots (1 - R_n) = f(R_1, \ldots R_n)(max), \]
\[Z = P_{tr}/P_t = P_{tr}/(\sum_{i=1}^{m} a_i x_i)^{\alpha}(\sum_{j=1}^{n} b_j y_j)^{\beta}, \]
\[Mr = \sum_{m=1}^{M} R_m + \sum_{n=1}^{N} R_n + \sum_{i=1}^{I} R_i, \]

where \(H \) - project advantage index (as a percentage);
\(M_t \) - indicator of the technical level of the project (in units);
\(M_b \) - financial advantages of the project (in terms of liquidity) (in units);
\(Cd \) - total costs for project development, including costs for applied research, capital investment, production capacity, additional staffing of the enterprise, etc. (in standart units);
\(f \) - accumulation factor, which is expressed in the share use of existing specialized production facilities (in units);
\(M_{tr} \) - indicator of total risks for the respective project (in shares of the unit);
\(NPV \) - total net discounted income for this project for the entire project cycle (in standart units);
\(P_t \) - probability of technical success of the project (in shares of the unit);
\(P_p \) - probability of commercial success of the project (in shares of the unit);
\(S \) - strategic compliance of the designed scientific and technical product with other products, technologies and markets (in units);
\(Z \) - the degree of use of the intellectual potential of the enterprise (in shares of the unit);
\(FV_i \) - the amount of income in the year \(t \) (in standart units);
T - project planning horizon (number of years);
i - individual discount rate, which reflects part of the risks of this project (in units);
I_0 - initial investment costs for the project (in standard units);
r - real (adjusted for inflation) risk-free loan interest rate (real rate of return on loans, cleared of the inflation component);
w - average inflation expectations for the settlement period. It is the inflation expectations regarding future financial flows that are relevant, not the actual inflation that has taken place;
G_1 - premium for a separate risk on the l-th risk factor. Only non-innovative systematic risks of a general nature, not reflected in the benefit index, are taken into account;
$R_{1, ... R_m}$ - technical risks of the project (in units);
$R_{1, ... R_n}$ - commercial risks of the project (in units);
$R_{1, ... R_l}$ - other risks of the project (in units);
P_{I_i} - realized intellectual potential of the enterprise (in standard units);
P_{I_I} - available intellectual potential of the enterprise (in standard units).

Indicators P_{I_i} and P_{I_I} are calculated by a formula based on the Cobb-Douglas model;
x_i - the number of specialists of the i-th level ($i=1, ... n$);
$α_i$ - “contribution” of specialists of the i-th level;
$γ_j$ - the number of high-tech equipment of the j-th type, ($j=1, ... m$);
$β_j$ - j-type equipment performance;
$α$ and $β$ - coefficients determined by the specifics of intellectual activity of specialists of the enterprise (as a rule, $α + β = 1$).

The proposed conceptual structural-mathematical model assumes that the risk factor is a fundamental problem of investment support of innovative projects, and the final stage of analysis of innovation risks is the calculation of the individual discount rate for each project (based on the assessment of total and individual risks). The purpose of this model is to provide a comprehensive, systematic approach to investment decision-making in the field of innovative design.

References:
THE ROLE OF THE STATE APPARATUS IN THE FIELD OF STATE ADMINISTRATION

Olga Fedyk
Ph.D of economy, chief of the chair of management
Lviv National Agrarian University
UKRAINE

The state apparatus is a structured system of public authorities, the main criterion for the division of which is the division into legislative, executive and judicial. Each of these branches of government has its respective tasks and functions.

Under the functions of the state should be understood as a set of main areas of its activities. The functions of the state include - political, economic, environmental, social, cultural, law enforcement and a number of other functions. In general, the concept of public administration covers various areas of regulation of public relations in the state. An important division of functions on the territory of such distribution is the external or internal functions of the state in the field of governance, as public authorities can carry out the process of regulating relations both within the country and abroad.

According to the current Constitution of Ukraine, the Legislative Power in our country includes the Supreme Council of Ukraine, whose tasks include the representative function, legislative function, state-building, political function and parliamentary control function, and the list of such functions is provided by current state legislation [1].

If the main tasks and functions of the Supreme Council of Ukraine include its legislative process, is the legislative function is entrusted exclusively to the Parliament, then the direct implementation and application of the law is provided by the executive authorities. It is they (these bodies) who implement the laws.

It should be noted that the system of executive bodies has a structured hierarchical system vertically, namely, the executive bodies are divided into Higher, Central and Local.

The highest executive bodies include the Cabinet of Ministers of Ukraine, represented by the relevant ministers and headed by the Prime Minister. The central executive bodies include ministries and departments, while the local executive bodies include the relevant local administrations and administrations.