METHOD FOR DETERMINING MEMBERSHIP FUNCTION BASED ON EQUIDISTANT POINTS
PDF

Як цитувати

Slyusar, V., Sotnyk, V., Bondarchuk, M., Kupchyn, A., & Bilokur, M. (2020). METHOD FOR DETERMINING MEMBERSHIP FUNCTION BASED ON EQUIDISTANT POINTS. Збірник наукових праць ΛΌГOΣ. https://doi.org/10.36074/11.12.2020.v2.07
https://doi.org/10.36074/11.12.2020.v2.07
PDF

Посилання

Shtovba, S. D. (2007). Designing Fuzzy Systems Using MATLAB. Moscow Publishing House “Hotline – Telecom.

Leonenkov, A.V. (2005). Fuzzy modeling in MATLAB environment and fuzzyTECH. Publishing House BHVPetersburg”.

Ahmet, Arslan Mehmet Kaya (2001). Determination of fuzzy logic membership functions using genetic algorithms. Fuzzy Sets and Systems, 118 (2), 297-306. Retrived from: https://doi.org/10.1016/S0165-0114(99)00065-2.

Derbel, I., Hachani, N. and Ounelli, H. (2008). Membership Functions Generation Based on Density Function. International Conference on Computational Intelligence and Security, Suzhou, 96-101. Retrived from: https://doi.org/10.1109/CIS.2008.211.

Medasania, S., Kimb, J. & Krishnapurama, R. (1998). An overview of membership function generation techniques for pattern recognition. International Journal of Approximate Reasoning, 19 (3–4), 391-417. Retrived from: https://doi.org/10.1016/S0888-613X(98)10017-8.

Huybrechs, D. (2009). Stable high-order quadrature rules with equidistant points. Journal of Computational and Applied Mathematics, 231 (2), 933-947. Retrived from: https://doi.org/10.1016/j.cam.2009.05.018.

Kyryk, V.V. (2019). Mathematical apparatus of artificial intelligence in power systems. Kyiv Polytechnic Publishing House. Retrived from: https://ela.kpi.ua/handle/123456789/30080.

Creative Commons License

Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.

Завантаження

Дані завантаження ще не доступні.

| Переглядів: 97 | Завантажень: 76 |