Characteristics of traveling ionospheric disturbances from incoherent scatter data

  • S. Panasenko
  • K. Aksonova
  • D. Kotov

Анотація

MONOGRAPH

This monograph describes the results of detection of traveling ionospheric disturbances and their parameters estimation based on long-term observations using Kharkiv incoherent scatter radar. For a couple of events, the data of other incoherent scatter radars were employed for comparative analysis.

The book reports the results of traveling ionospheric disturbance observations during high energy natural and artificial sources. The book will be useful for scientific researchers, lecturers, PhD and undergraduate students working and studying in the field of electrical and electronic engineering, space and planetary science, atmospheric science, statistical and nonlinear physics, and geophysics.

Recommended for publication by the Academic Council of the Institute of ionosphere (protocol No 4 from 04.06.2021)

══════════════════════════════════

REVIEWERS:
O. V. Shvets - Leading Research Scientist of the O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine, Doctor of Sciences in Physics and Mathematics, Senior Researcher
Yu. P. Sumaruk - Leading Researcher of the Department of Geomagnetism, Institute of Geophysics by S.I. Subbotin name of National Academy of Sciences of Ukraine, Doctor of Sciences in Physics and Mathematics, Senior Researcher
E. V. Rogozhkin - Full Professor of National Technical University “Kharkiv Polytechnic Institute”, Doctor of Sciences in Physics and Mathematics, Professor

══════════════════════════════════

CONTENTS:

Preface

Abbreviations

Chapter 1. BACKGROUND VARIATIONS AND WAVE PROCESSES IN THE IONOSPHERE

1.1. Introduction to ionospheric processes
1.2. Motions in the atmosphere and ionosphere
1.3. Magnetic storms and the ionosphere
1.4. Inhomogeneities and disturbances in the ionosphere
1.5. Wave processes in the atmosphere and ionosphere
1.6. Classification of traveling ionospheric disturbances
1.7. Sources of traveling ionospheric disturbances
   1.7.1. Solar terminator
   1.7.2. Solar eclipse
   1.7.3. Generation of secondary waves
   1.7.4. Impact of geomagnetic activity
1.8. Propagation of AGWs and TIDs
1.9. Coupling between background and wave processes
1.10. Atmosphere and ionosphere models

Chapter 2. TECHNIQUES AND FACILITIES FOR DETECTION OF WAVE PROCESSES

2.1. Space-borne techniques
2.2. Global navigation satellite system techniques
2.3. Optical techniques
2.4. Techniques for the lower ionosphere
2.5. Remote sensing radio techniques
2.6. Radars for ionosphere sounding
   2.6.1. Meteor trail radars
   2.6.2. Radars of oblique reflections of low-frequency radio waves
   2.6.3. Partial reflection radars
   2.6.4. SuperDARN HF radars
   2.6.5. Ionosondes
   2.6.6. Incoherent scatter rada

Chapter 3. METHODS FOR CHARACTERIZATION OF TRAVELING IONOSPHERIC DISTURBANCES

3.1. Filtering of intermittent interferences and hardware failures
3.2. Estimation of absolute and relative variations
3.3. Spectral analysis and band-pass filtration methods
3.4. Estimation of propagation characteristics
3.5. Estimation of wave characteristics using dense GPS networks
   3.5.1. Trend estimation
   3.5.2. Retrieving of traveling ionospheric disturbances

Chapter 4. TRAVELING IONOSPHERIC DISTURBANCES UNDER MAGNETICALLY QUIET CONDITIONS

4.1. Solar and magnetic activity
4.2. The results of spectral analysis
4.3. Evaluation of TID parameters
   4.3.1. TIDs with periods of 60 – 120 min
   4.3.2. TIDs with periods of 30 – 60 min
   4.3.3. TIDs with periods of 15 – 30 min
   4.3.4. Oscillations which are not associated with predominant TIDs
   4.3.5. Statistical characteristics of AGW and TID parameters
4.4. Disturbances in ion and electron temperatures
   4.4.1. Spectral analysis of ion and electron temperatures
   4.4.2. Prevailing traveling ionospheric disturbances
   4.4.3. TID manifestations in different ionospheric parameters

Chapter 5. TRAVELING IONOSPHERIC DISTURBANCES DURING MAGNETIC DISTURBANCES AND STORMS

5.1. Information about magnetic disturbances and storms
   5.1.1. Storm in November, 2012
   5.1.2. Storms in March and June, 2016
   5.1.3. Storm in September, 2016
5.2. Results of spectral analysis
   5.2.1. Analysis of IS power variations for November 13 – 15, 2012
   5.2.2. Analysis of IS power and temperature variations for March and June, 2016
   5.2.3. Analysis of IS power and temperature variations for September 1 – 3, 2016
5.3. Estimation of TID parameters
   5.3.1. Parameters of predominant TIDs for March and June 2016
   5.3.2. Parameters of predominant TIDs for September 1 – 3, 2016
5.4. Summary results of studies

Chapter 5. NATURALLY AND ARTIFICIALLY INDUCED TRAVELING IONOSPHERIC DISTURBANCES

6.1. Solar eclipse induced disturbances
   6.1.1. General information about solar eclipse 
   6.1.2. Disturbance detection and characterization
6.2. EISCAT Heater operation induced disturbances
   6.2.1. EISCAT Heater facility
   6.2.2. Data sets
   6.2.3. Observation results

REFERENCES

══════════════════════════════════

Видавець: Primedia eLaunch LLC, 2021
Виготовлювач: Друкарня ФОП Гуляєва В.М., 2021

ISBN 978-1-63944-405-2

linear2.png

Завантаження

Дані завантаження ще не доступні.

| Переглядів: 50 | Завантажень: 18

Посилання

Adeniyi, J. O. (1986). Magnetic storm effects on the morphology of the equatorial F2-layer. Journal of atmospheric and terrestrial physics, 48(8), 695.

Afraimovich, E. L., Ashkaliev, Y. F., Aushev, V. M., Beletsky, A. B., Vodyannikov,

V. V., Leonovich, L. A., ... & Yakovets, A. F. (2002). Simultaneous radio and optical observations of the mid-latitude atmospheric response to a major geomagnetic storm of 6–8 April 2000. Journal of Atmospheric and Solar-Terrestrial Physics, 64(18), 1943.

Afraimovich, E. L. (2008). First GPS-TEC evidence for the wave structure excited by the solar terminator. Earth, planets and space, 60(8), 895.

Afraimovich, E. L., Edemskiy, I. K., Voeykov, S. V., Yasyukevich, Y. V., & Zhivetiev, I. V. (2009). Spatio-temporal structure of the wave packets generated by the solar terminator. Advances in space research, 44(7), 824.

Afraimovich, E. L., Edemskiy, I. K., Voeykov, S. V., Yasyukevich, Y. V., & Zhivetiev, I. V. (2010a). Travelling wave packets generated by the solar terminator in the upper atmosphere. Atmospheric and Oceanic Optics, 23(1), 21.

Afraimovich, E. L., Edemsky, I. K., Voeykov, S. V., Yasukevich, Y. V., & Zhivetiev,

I. V. (2010b). MHD nature of ionospheric wave packets generated by the solar terminator. Geomagnetism and Aeronomy, 50(1), 79.

Altadill, D., Sole, J. G., & Apostolov, E. M. (2001). Vertical structure of a gravity wave like oscillation in the ionosphere generated by the solar eclipse of August 11, 1999. Journal of geophysical research: Space physics, 106(A10), 21419.

Anderson, T. W., & Finn, J. D. (2012). The new statistical analysis of data.

Springer Science & Business Media.

Barabash, V. V., Panasenko, S. V., Aksonova, K. D., & Lisachenko, V. N. (2017). Characteristics of traveling ionospheric disturbances over Ukraine and West Antarctica during the strong geospace storm according to data of vertical sounding and incoherent scattering. Ukrainian Antarctic journal, (16), 113. (In Ukrainian)

Bertin, F., Hughes, K. A., & Kersley, L. (1977). Atmospheric waves induced by the solar eclipse of 30 June 1973. Journal of Atmospheric and Terrestrial Physics, 39(4), 457.

Bilitza, D. (2005). 35 years of International Reference Ionosphere–Karl Rawer’s legacy. Advances in Radio Science, 2(G. 2), 283.

Bogomaz, O, Kotov, D, Panasenko, S, Emelyanov, L. (2017) Advances in software for analysis of Kharkiv incoherent scatter radar data. In: 2017 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo).

Borchevkina, O. P., Karpov, I. V., & Karpov, A. I. (2017). Observations of acoustic gravity waves during the solar eclipse on March 20, 2015 in Kaliningrad. Chemical physics, 36(12), 51. (In Russian)

Borisova, T. D., Blagoveshchenskaya, N. F., Kornienko, V. A., & Rietveld, M. T. (2007). Determining the ionospheric irregularity velocity vector based on doppler measurements in the artificially modified F2 region of the polar ionosphere. Geomagnetism and Aeronomy, 47(1), 76.

Borries, C., Jakowski, N., & Wilken, V. (2009). Storm induced large scale TIDs observed in GPS derived TEC. Annales Geophysicae, 27(4), 1605.

Borries, C., Jakowski, N., Kauristie, K., Amm, O., Mielich, J., & Kouba, D. (2017). On the dynamics of large-scale traveling ionospheric disturbances over Europe on 20 November 2003. Journal of Geophysical Research: Space Physics, 122(1), 1199.

Brace, L. H. (1998). Langmuir probe measurements in the ionosphere.

Geophysical Monograph-American Geophysical Union, 102, 23.

Broom, S. M. (1984). A new ionosonde for Argentine Islands ionospheric observatory, Faraday Station. British Antarctic Survey Bulletin, 62, 1.

Bryunelli B. Ye., & Namgaladze A. A. (1988). Ionosphere Physics. Moscow, Nauka, 528 p. (In Russian)

Buonsanto, M. J. (1999). Ionospheric storms—A review. Space Science Reviews, 88(3), 563.

Burmaka, V. P., Taran, V. I., & Chernogor, L. F. (2005). Results of study of wave disturbances in the ionosphere using incoherent scatter technique. Advances in modern radio electronics, (3), 4. (In Russian)

Burmaka, V. P., & Chernogor, L. F. (2012). Wave disturbances in the ionosphere during a lasting solar activity minimum. Geomagnetism and Aeronomy, 52(2), 183.

Chekalin, S. V., & Shatrov, Ya. T. (1991). Influence of launches of transport space systems on the Earth's atmosphere. Moscow, Knowledge, (7), 1991. (In Russian)

Chernigovskaya, M. A., Shpynev, B. G., Habituev, D. S., Ratovsky, K. G., Belinskaya, A. Yu., Stepanov, A. E., Bychkov V. V., Grigoryeva S. А., Panchenko V. A., Kouba D. & Melich, Y. (2019). Longitudinal variations of ionospheric and geomagnetic parameters in the northern hemisphere during strong magnetic storms in 2015. Modern problems of remote sensing of the Earth from space, 16(5), 336. (In Russian)

Chernogor, L. F. (2008). Advanced methods of spectral analysis of quasiperiodic wave-like processes in the ionosphere: Specific features and experimental results. Geomagnetism and Aeronomy, 48(5), 652.

Chernogor, L. F. (2009). Remote radio sounding of the atmosphere and geospace. Kharkiv, V. N. Karazin Kharkiv national university. (In Russian)

Chernogor, L. F. (2011). The Earth–atmosphere–geospace system: main properties and processes. International journal of remote sensing, 32(11), 3199.

Chernogor, L. F. (2012). Geomagnetic pulsations accompanied the solar terminator moving through magnetoconjugate region. Radio Physics and Radio Astronomy, 17(1), 57. (In Russian)

Chernogor, L. F. (2013). Mechanisms for generating oscillations in the infrasound frequency range in the upper atmosphere by periodic high-power radio transmissions. Radio physics and radio astronomy, 17(3), 240. (In Russian)

Chenogor, L. F., & Domnin, I. F. (2014). Physics of geospace storms. Kharkiv,

V. N. Karazin Kharkiv national university. (In Russian)

Chernogor, L. F., Panasenko, S. V., Frolov, V. L., & Domnin, I. F. (2015). Observations of the ionospheric wave disturbances using the Kharkov incoherent scatter radar upon RF heating of the near-earth plasma. Radiophysics and Quantum Electronics, 58(2), 79.

Chernogor, L. F. (2016). Wave processes in the ionosphere over Europe that accompanied the solar eclipse of March 20, 2015. Kinematics and Physics of Celestial Bodies, 32(4), 196.

Chernogor, L. F., & Garmash, K. P. (2017). Magneto-ionospheric effects of the solar eclipse of March 20, 2015, over Kharkov. Geomagnetism and Aeronomy, 57(1), 72.

Chernogor L. F., Domnin I. F., Emelyanov L. Ya., Lyashenko M. V. (2019). Physical processes in the ionosphere during the solar eclipse on March 20, 2015 over Kharkiv, Ukraine (49.6° N, 36.3° E). Journal of Atmospheric and Solar- Terrestrial Physics, 182.

Chimonas, G., & Hines, C. O. (1970). Atmospheric gravity waves induced by a solar eclipse. Journal of Geophysical Research, 75(4), 875.

Chisham, G., Lester, M., Milan, S. E., Freeman, M. P., Bristow, W. A., Grocott, A.,

... & Walker, A. D. M. (2007). A decade of the Super Dual Auroral Radar Network (SuperDARN): Scientific achievements, new techniques and future directions. Surveys in geophysics, 28(1), 33.

Coster, A. J., Goncharenko, L., Zhang, S. R., Erickson, P. J., Rideout, W., & Vierinen, J. (2017). GNSS observations of ionospheric variations during the 21 August 2017 solar eclipse. Geophysical Research Letters, 44(24), 12041.

Danilkin, N. P. (2008). Radio sounding of the ionosphere by satellite and ground-based ionosondes. Proceedings of the Institute of Applied Geophysics, (87), 209. (in Russian)

Danilov, A. D., Kazimirovsky, E. S., Vergasov, G. V., & Hachikyan, G. Ya. (1987).

Meteorological effects in the ionosphere. Gidrometeoizdat. (In Russian)

Danilov, A. D. (2013). Response of the F region to geomagnetic disturbances (review). Heliogeophysical research, (5), 1. (In Russian)

Davies, K. (1990). Ionospheric Radio. London, Peter Pergrinus.

Domnin, I. F., Panasenko, S. V., Uryadov, V. P., & Chernogor, L. F. (2012). Results of Radiophysical Study of Wave Disturbances in the Ionospheric Plasma During Its Heating by High-Power HF Radio Transmission of “Sura” facility. Radiophysics and Quantum Electronics, 55, 253.

Domnin, I. F, Chepurnyy, Y. M, Emelyanov, L. Y, Chernyaev, S. V, Kononenko, A. F, Kotov, D. V, Bogomaz, O. V, Iskra, D. A. (2014) Kharkiv incoherent scatter facility. Bulletin of the National Technical University “Kharkiv Polytechnic Institute". Series “Radiophysics and ionosphere", 47(1089), 28.

Dougherty, J. P., & Farley Jr, D. T. (1963). A theory of incoherent scattering of radio waves by a plasma: 3. Scattering in a partly ionized gas. Journal of Geophysical Research, 68(19), 5473.

Edemsky, I. K., Voeykov, S. V., & Yasukevich, Yu. V. (2011). Seasonal and latitudinal variations in the parameters of MHD wave disturbances generated by the solar terminator. Modern problems of remote sensing of the Earth from space, 8(4), 107. (In Russian)

Evans, J. V. (1969). Theory and practice of ionosphere study by Thomson scatter radar. Proceedings of the IEEE, 57(4).

Fejer, J. A., Gonzales, C. A., Ierkic, H. M., Sulzer, M. P., Tepley, C. A., Duncan, L. M., ... & Gordon, W. E. (1985). Ionospheric modification experiments with the Arecibo heating facility. Journal of atmospheric and terrestrial physics, 47(12).

Förster, M., & Jakowski, N. (2000). Geomagnetic storm effects on the topside ionosphere and plasmasphere: a compact tutorial and new results. Surveys in Geophysics, 21(1), 47.

Frissell, N. A., Baker, J. B. H., Ruohoniemi, J. M., Gerrard, A. J., Miller, E. S., Marini, J. P., ... & Bristow, W. A. (2014). Climatology of medium-scale traveling ionospheric disturbances observed by the midlatitude Blackstone SuperDARN radar. Journal of geophysical research: space physics, 119(9), 7679.

Fritts, D. C., & Luo, Z. (1993). Gravity wave forcing in the middle atmosphere due to reduced ozone heating during a solar eclipse. Journal of Geophysical Research: Atmospheres, 98(D2), 3011.

Fritts, D. C., & Alexander, M. J. (2003). Gravity wave dynamics and effects in the middle atmosphere. Reviews of geophysics, 41(1).

Frolov, V. L., Komrakov, G. P., Kunitsyn, V. E., Padokhin, A. M., Vasiliev, A. E., & Kurbatov, G. A. (2010). Sounding of the ionosphere disturbed by the “Sura” heating facility radiation using signals of the GPS satellites. Radiophysics and Quantum Electronics, 53(7), 379.

Fukao, S., Sato, T., Tsuda, T., Kato, S., Wakasugi, K., & Makihira, T. (1985a). The MU radar with an active phased array system: 1. Antenna and power amplifiers. Radio Science, 20(6), 1155.

Fukao, S., Tsuda, T., Sato, T., Kato, S., Wakasugi, K., & Makihira, T. (1985b). The MU radar with an active phased array system: 2. In-house equipment. Radio Science, 20(6), 1169.

Galushko, V. G., Paznukhov, V. V., Sopin, A. A., & Yampolski, Y. M. (2016). Statistics of ionospheric disturbances over the Antarctic Peninsula as derived from TEC measurements. Journal of Geophysical Research: Space Physics, 121(4), 3395.

Gardner, F. F., & Pawsey, J. L. (1953). Study of the ionospheric D-region using partial reflections. Journal of Atmospheric and Terrestrial Physics, 3(6), 321.

Garmash, K. P., & Chernogor, L. F. (1998). Elegtromagnetic and geophysical effects in the near-Earth plasma, stimulated by high power high frequency radio waves. Electromagnetic phenomena, 1(1), 90. (In Russian)

Garmash, K. P., Rozumenko, V. T., Tyrnov, O. F., Tsymbal, A. M., & Chernogor, L.

F. (1999). Radiophysical studies of processes in near-Earth plasma disturbed by high-energy sources. Foreign radio electronics. Advances in modern radio electronics, (7), 3. (In Russian)

Georges, T. M. (1973). Infrasound from convective storms: Examining the evidence. Reviews of Geophysics, 11(3), 571.

Gershman, B. N. (1974). Dynamics of the ionospheric plasma. Moscow, Science.

Gossard, E. E., & Hooke, W. H. (1975). Waves in the atmosphere: Atmospheric infrasound and gravity waves. Their generation and propagation. Amsterdam, Elsevier Scientific Publishing Co.

Gurevich, A. V. (1976). Nonlinear phenomena in the ionosphere.

Radiophysics and Quantum Electronics, 19(6), 595.

Hanna, E., Penman, J., Jónsson, T., Bigg, G. R., Björnsson, H., Sjúrðarson, S., ... & Bryant, R. G. (2016). Meteorological effects of the solar eclipse of 20 March 2015: analysis of UK Met Office automatic weather station data and comparison with automatic weather station data from the Faroes and Iceland. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2077).

Hapgood, M. (2017). Satellite navigation—Amazing technology but insidious risk: Why everyone needs to understand space weather. Space Weather, 15(4), 545.

Harris, M. J., Arnold, N. F., & Aylward, A. D. (2002). A study into the effect of the diurnal tide on the structure of the background mesosphere and thermosphere using the new coupled middle atmosphere and thermosphere (CMAT) general circulation model. Annales Geophysicae, 20(2), 225.

Hassenpflug, G., Yamamoto, M., Luce, H., & Fukao, S. (2008). Description and demonstration of the new Middle and Upper atmosphere Radar imaging system:

- D, 2-D, and 3-D imaging of troposphere and stratosphere. Radio Science, 43(02).

Heaviside, O. (1902). The theory of electric telegraphy. Encyclopaedia Britannica, 33, 215.

Heelis, R. A., & Hanson, W. B. (1998). Measurements of thermal ion drift velocity and temperature using planar sensors. Geophysical Monograph. American Geophysical Union, 102, 61.

Hernández-Pajares, M., Juan, J. M., Sanz, J., & Aragón-Àngel, A. (2012). Propagation of medium scale traveling ionospheric disturbances at different latitudes and solar cycle conditions. Radio Science, 47(6).

Hines, C. O. (1960). Internal atmospheric gravity waves at ionospheric heights. Canadian Journal of Physics, 38(11), 1441.

Hocke, K., & Schlegel, K. (1996). A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995. Annales Geophysicae, 14(9), 917.

Hocke, K., Schlegel, K., & Kirchengast, G. (1996). Phases and amplitudes of TIDs in the high latitude F-region observed by EISCAT. Journal of Atmospheric and Terrestrial Physics, 58(1-4), 245.

Hocking, W. K. (1997). Strengths and limitations of MST radar measurements of middle-atmosphere winds. Annales Geophysicae, 15(9), 1111.

Holdsworth, D. A., Vincent, R. A., & Reid, I. M. (2001). Mesospheric turbulent velocity estimation using the Buckland Park MF radar. Annales Geophysicae, 19(8), 1007.

Holt, J. M., Zhang, S. R., & Buonsanto, M. J. (2002). Regional and local ionospheric models based on Millstone Hill incoherent scatter radar data. Geophysical research letters, 29(8), 48.

Hooke, W. H. (1968). Ionospheric irregularities produced by internal atmospheric gravity waves. Journal of Atmospheric and Terrestrial Physics, 30(5), 795.

Hunsucker, R. D. (1982). Atmospheric gravity waves generated in the high-latitude ionosphere: A review. Reviews of Geophysics, 20(2), 293.

Jacobi, C., Portnyagin, Y. I., Solovjova, T. V., Hoffmann, P., Singer, W., Fahrutdinova, A. N., Ishmuratov, R. A., Beard, A. G., Mitchell, N. J., Muller, H. G., Schminder, R., Kürschner, D., Manson, A. H., & Meek, C. E. (1999). Climatology of the semidiurnal tide at 52–56 N from ground-based radar wind measurements 1985–1995. Journal of Atmospheric and Solar-Terrestrial Physics, 61(13), 975.

Jacobi, C., Gavrilov, N. M., Kürschner, D., & Fröhlich, K. (2006). Gravity wave climatology and trends in the mesosphere/lower thermosphere region deduced from low-frequency drift measurements 1984–2003 (52.1 N, 13.2 E). Journal of atmospheric and solar-terrestrial physics, 68(17), 1913.

Jakowski, N., Stankov, S. M., Wilken, V., Borries, C., Altadill, D., Chum, J., ... & Cander, L. R. (2008). Ionospheric behavior over Europe during the solar eclipse of 3 October 2005. Journal of Atmospheric and Solar-Terrestrial Physics, 70(6), 836.

Karpov, I. V., & Bessarab, F. S. (2008). Model studying the effect of the solar terminator on the thermospheric parameters. Geomagnetism and Aeronomy, 48(2), 209.

Karpov, I. V., Kshevetsky, S. P., Borchevkina, O. P., Radievsky, A. V., & Karpov,

A. I. (2016). Disturbances of the upper atmosphere and ionosphere initiated by sources of acoustic-gravity waves in the lower atmosphere. Chemical physics, 35(1), 59. (In Russian)

Kasahara, Y., Kasaba, Y., Kojima, H., Yagitani, S., Ishisaka, K., Kumamoto, A., ... & Shinohara, I. (2018). The plasma wave experiment (PWE) on board the Arase (ERG) satellite. Earth, Planets and Space, 70(1).

Kamide, Y., & Chian, A. C. L. (Eds.). (2007). Handbook of the solar-terrestrial environment. Springer Science & Business Media.

Kazimirovsky, E. S., & Kokourov, V. D. (1979). Motions in the ionosphere.

Novosibirsk, Nauka, 344 p. (In Russian)

Kennelly, A. E. (1902). On the elevation of the electrically-conducting strata of the Earth’s atmosphere. Electrical world and engineer, 39(11), 473.

Kirchengast, G., Hocke, K., & Schlegel, K. (1995). Gravity waves determined by modeling of traveling ionospheric disturbances in incoherent-scatter radar measurements. Radio science, 30(5), 1551.

Knudsen, D. J., Burchill, J. K., Buchert, S. C., Eriksson, A. I., Gill, R., Wahlund, J. E., ... & Moffat, B. (2017). Thermal ion imagers and Langmuir probes in the Swarm electric field instruments. Journal of Geophysical Research: Space Physics, 122(2), 2655.

Kotake, N., Otsuka, Y., Ogawa, T., Tsugawa, T., & Saito, A. (2007). Statistical study of medium-scale traveling ionospheric disturbances observed with the GPS networks in Southern California. Earth, planets and space, 59(2), 95.

Koval, A., Chen, Y., Stanislavsky, A., Kashcheyev, A., & Zhang, Q. H. (2018). Simulation of Focusing Effect of Traveling Ionospheric Disturbances on Meter-Decameter Solar Dynamic Spectra. Journal of Geophysical Research: Space Physics, 123(11), 8940.

Kozak, L. V., & Pylypenko, S. G. (2011). Temperature changes of the Earth upper atmosphere over storms from satellite measurements. Astronomical School’s Report, 7(1), 42.

Kozlovsky, A., Turunen, T., & Ulich, T. (2013). Rapid-run ionosonde observations of traveling ionospheric disturbances in the auroral ionosphere. Journal of Geophysical Research: Space Physics, 118(8), 5265.

Kumamoto, A., Tsuchiya, F., Kasahara, Y., Kasaba, Y., Kojima, H., Yagitani, S.,

... & Obara, T. (2018). High frequency analyzer (HFA) of plasma wave experiment (PWE) onboard the Arase spacecraft. Earth, Planets and Space, 70(1).

Kunitsyn, V. E., Andreeva, E. S., Frolov, V. L., Komrakov, G. P., Nazarenko, M. O., & Padokhin, A. M. (2012). Sounding of HF heating-induced artificial ionospheric disturbances by navigational satellite radio transmissions. Radio Science, 47(4).

Kunitsyn, V. E., Krysanov, B. Yu., & Vorontsov, A. M. (2015). Generation of acoustic-gravity waves by various sources on the Earth's surface. Moscow University Bulletin. Series 3. Physics. Astronomy, (6). (in Russian)

Kurdyaeva, Y. A., Kshevetskii, S. P., Gavrilov, N. M., & Kulichkov, S. N. (2018). Correct boundary conditions for the high-resolution model of nonlinear acoustic- gravity waves forced by atmospheric pressure variations. Pure and Applied Geophysics, 175(10), 3639.

Kutelev, K. A., & Berngardt, O. I. (2014). Medium-scale wave disturbances in the F-layer of the ionosphere during two hours after the fall of the Chelyabinsk meteorite from observations of the ESW radar. Meteorite Chelyabinsk-year on Earth, 171. (In Russian)

Leonovich, L. A., Romanova, E. B., Tatshilin, A. V., & Kovtunenko, V. G. (2005). Modeling of ionospheric effect of solar flare on September, 23, 1998. Solar- terrestrial physics, (8), 135. (In Russian)

Liu, J. Y., Hsiao, C. C., Tsai, L. C., Liu, C. H., Kuo, F. S., Lue, H. Y., & Huang, C. M.

(1998). Vertical phase and group velocities of internal gravity waves derived from ionograms during the solareclipse of 24 October 1995. Journal of Atmospheric and Solar-Terrestrial Physics, 60(17), 1679.

Lizunov, G. V., & Fedorenko, A. K. (2013). Atmospheric gravity waves generation by solar terminator according to “Atmosphere Explorer-E” satellite data. Radio Physics and Radio Astronomy, 11(1), 49. (In Russian)

Lomidze, L., Knudsen, D. J., Burchill, J., Kouznetsov, A., & Buchert, S. C. (2018). Calibration and validation of Swarm plasma densities and electron temperatures using ground-based radars and satellite radio occultation measurements. Radio Science, 53(1), 15.

MacDougall, J. W., & Jayachandran, P. T. (2011). Solar terminator and auroral sources for traveling ionospheric disturbances in the midlatitude F region. Journal of atmospheric and solar-terrestrial physics, 73(17-18), 2437.

Mannucci, A. J., Wilson, B. D., Yuan, D. N., Ho, C. H., Lindqwister, U. J., & Runge, T. F. (1998). A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio science, 33(3), 565.

Mannucci, A. J., Iijima, B. A., Lindqwister, U. J., Pi, X., Sparks, L., & Wilson, B. D.

(1999). GPS and ionosphere: review of radio science 1996–1999.

Manson, A., Meek, C., Hagan, M., Hall, C., Hocking, W., MacDougall, J., Franke, S., Riggin, D., Fritts, D., Vincent, R., & Burrage, M. (1999). Seasonal variations of the semi-diurnal and diurnal tides in the MLT: Multi-year MF radar observations from 2 to 70 N, and the GSWM tidal model. Journal of Atmospheric and Solar- Terrestrial Physics, 61(11), 809.

Manson, A. H., Meek, C. E., Koshyk, J., Franke, S., Fritts, D. C., Riggin, D., Hall, C., M., Hocking, W. K., MacDougall, J., Igarashi, K., & Vincent, R. A. (2002). Gravity wave activity and dynamical effects in the middle atmosphere (60–90km): observations from an MF/MLT radar network, and results from the Canadian Middle Atmosphere Model (CMAM). Journal of atmospheric and solar-terrestrial physics, 64(1), 65.

Marlton, G. J., Williams, P. D., & Nicoll, K. A. (2016). On the detection and attribution of gravity waves generated by the 20 March 2015 solar eclipse. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2077).

Marple Jr, S. L., & Carey, W. M. (1989). Digital spectral analysis with applications. Prentice-Hall, New York.

Matsuoka, A., Teramoto, M., Nomura, R., Nosé, M., Fujimoto, A., Tanaka, Y., ... & Shinohara, I. (2018). The ARASE (ERG) magnetic field investigation. Earth, Planets and Space, 70(1).

Medvedev, А. V., Ratovsky, K. G., Tolstikov, M. V., Oinats, A. V., Alsatkin, S. S., & Zherebtsov, G. A. (2017). Relation of internal gravity wave anisotropy with neutral wind characteristics in the upper atmosphere. Journal of Geophysical Research: Space Physics, 122(7), 7567.

Merzlyakov, E. G., & Portnyagin, Yu. I. (1999). Long-term changes in the parameters of the wind regime of the lower thermosphere in temperate latitudes (90 – 100 km). Physics of atmosphere and ocean, 35(4), 531. (In Russian)

Middleton, H. R., Mitchell, N. J., & Muller, H. G. (2002). Mean winds of the mesosphere and lower thermosphere at 52 N in the period 1988–2000. Annales Geophysicae, 20(1), 81.

Migulin, V. V., & Gurevich, A. V. (1985). Investigation in the USSR of non- linear phenomena in the ionosphere. Journal of atmospheric and terrestrial physics, 47(12), 1181.

Mishin, E., Sutton, E., Milikh, G., Galkin, I., Roth, C., & Förster, M. (2012). F2-region atmospheric gravity waves due to high-power HF heating and subauroral polarization streams. Geophysical research letters, 39(11).

Miyoshi, Y., Shinohara, I., Takashima, T., Asamura, K., Higashio, N., Mitani, T.,

... & Seki, K. (2018). Geospace exploration project ERG. Earth, Planets and Space, 70(1).

Mošna, Z., Boška, J., Knížová, P. K., Šindelářová, T., Kouba, D., Chum, J., Rejfek L., Potužníková K., Arikan F. & Toker, C. (2018). Observation of the solar eclipse of

March 2015 at the Pruhonice station. Journal of Atmospheric and Solar- Terrestrial Physics, 171, 277.

Müller-Wodarg, I. C. F., Aylward, A. D., & Lockwood, M. (1998). Effects of a mid-latitude solar eclipse on the thermosphere and ionosphere-A modelling study. Geophysical Research Letters, 25(20), 3787.

Namboothiri, S. P., Manson, A. H., & Meek, C. E. (1993). Variations of mean winds and tides in the upper middle atmosphere over a solar cycle, Saskatoon, Canada, 52 N, 107 W. Journal of atmospheric and terrestrial physics, 55(10), 1325.

Namboothiri, S. P., Meek, C. E., & Manson, A. H. (1994). Variations of mean winds and solar tides in the mesosphere and lower thermosphere over time scales ranging from 6 months to 11 yr: Saskatoon, 52 N, 107 W. Journal of Atmospheric and Terrestrial Physics, 56(10), 1313.

Nerushev, A. F. (2014). Jet streams in the Earth's atmosphere. Earth and Universe, (6), 16. (in Russian)

Nishioka, M., Saito, A., & Tsugawa, T. (2009). Super-medium-scale traveling ionospheric disturbance observed at midlatitude during the geomagnetic storm on 10 November 2004. Journal of Geophysical Research: Space Physics, 114(A7).

Nygrén, T., Aikio, A. T., Voiculescu, M., & Cai, L. (2015). Radar observations of simultaneous traveling ionospheric disturbances and atmospheric gravity waves. Journal of Geophysical Research: Space Physics, 120(5), 3949.

Otsuka, Y., Shiokawa, K., Ogawa, T., & Wilkinson, P. (2002). Geomagnetic conjugate observations of equatorial airglow depletions. Geophysical Research Letters, 29(15), 43.

Otsuka, Y., Shiokawa, K., Ogawa, T., & Wilkinson, P. (2004). Geomagnetic conjugate observations of medium-scale traveling ionospheric disturbances at midlatitude using all-sky airglow imagers. Geophysical research letters, 31(15).

Otsuka, Y., Suzuki, K., Nakagawa, S., Nishioka, M., Shiokawa, K., & Tsugawa, A. (2013). GPS observations of medium-scale traveling ionospheric disturbances over Europe. Annales Geophysicae, 31(2), 163.

Oynats, A. V., Kurkin, V. I., & Chernigovskaya, M. A. (2012). Meteorological effects in the ionosphere according to the SuperDARN Hokkaido decameter radar. Modern problems of remote sensing of the Earth from space, 9(4), 113. (In Russian)

Panasenko, S. V. (2011). Filtration of temporal variations in the power of an incoherently scattered signal in the presence of irregular interference and equipment failures. Bulletin of the National Technical University “Kharkiv Polytechnic Institute". Series “Radiophysics and ionosphere", 44, 40. (In Russian)

Panasenko, S. V., Goncharenko, L. P., Erickson, P. J., Aksonova, K. D., & Domnin, I. F. (2018). Traveling ionospheric disturbances observed by Kharkiv

and Millstone Hill incoherent scatter radars near vernal equinox and summer solstice. Journal of Atmospheric and Solar-Terrestrial Physics, 172, 10.

Panasenko, S. V., Otsuka, Y., van de Kamp, M., Chernogor, L. F., Shinbori, A., Tsugawa, T., & Nishioka, M. (2019). Observation and characterization of traveling ionospheric disturbances induced by solar eclipse of 20 March 2015 using incoherent scatter radars and GPS networks. Journal of Atmospheric and Solar- Terrestrial Physics, 191.

Pancheva, D., Mitchell, N., Middleton, H., & Muller, H. (2003). Variability of the semidiurnal tide due to fluctuations in solar activity and total ozone. Journal of Atmospheric and Solar-Terrestrial Physics, 65(1), 1.

Pedersen, T., Gustavsson, B., Mishin, E., MacKenzie, E., Carlson, H. C., Starks, M., & Mills, T. (2009). Optical ring formation and ionization production in high-power HF heating experiments at HAARP. Geophysical research letters, 36(18).

Picone, J. M., Hedin, A. E., Drob, D. P., & Aikin, A. C. (2002). NRLMSISE-00

empirical model of the atmosphere: Statistical comparisons and scientific issues. Journal of Geophysical Research: Space Physics, 107(A12), 15.

Piggott, W. R., & Rawer, K. (1972). URSI handbook of ionogram interpretation and reduction.

Portnyagin, Yu. I., & Shpringer, K. (Eds.). (1978). Measurement of wind at altitudes of 90 – 100 km with ground-based techniques. Gidrometeoizdat. (In Russian)

Portnyagin, Yu. I., & Solovjova, T. V. (2000). Global empirical wind model for the upper mesosphere/lower thermosphere. I. Prevailing wind. Annales Geophysicae, 18 (3), 300.

Portnyagin, Y. I., Merzlyakov, E. G., Solovjova, T. V., Jacobi, C., Kürschner, D., Manson, A., & Meek, C. (2006). Long-term trends and year-to-year variability of mid-latitude mesosphere/lower thermosphere winds. Journal of atmospheric and solar-terrestrial physics, 68(17), 1890.

Pradipta, R., & Lee, M. C. (2013). Investigation of acoustic gravity waves created by anomalous heat sources: experiments and theoretical analysis. Physica Scripta, 2013(T155).

Pulyaev, V. A., Dzubanov, D. A., & Domnin I. F. (2011). Determination of the parameters of the ionosphere using the technique of incoherent scattering of radio waves. Kharkiv, Textbook. (in Russian)

Radicella, S. M. (2009). The NeQuick model genesis, uses and evolution.

Annals of geophysics, 52(3-4), 417.

Reinisch, B. W., Haines, D. M., & Kuklinski, W. S. (1992). The new portable Digisonde for vertical and oblique sounding. Proceedings of the AGARD EPP 50th Symposium, London, England, 11.

Reinisch, B. W., Galkin, I. A., Khmyrov, G. M., Kozlov, A. V., Lisysyan, I. A., Bibl, K., ... & Hamel, R. (2008). Advancing digisonde technology: The DPS-4D. American Institute of Physics. AIP Conference Proceedings, 974(1), 127.

Reinisch, B. W., & Galkin, I. A. (2011). Global ionospheric radio observatory (GIRO). Earth, planets and space, 63(4), 377.

Rich, F. J. (1994). Users Guide for the Topside Ionospheric Plasma Monitor (SSIES, SSIES-2 and SSIES-3) on Spacecraft of the Defense Meteorological Satellite Program, Volume 1: Technical Description.

Rietveld, M. T., Wright, J. W., Zabotin, N., & Pitteway, M. L. V. (2008). The tromsø dynasonde. Polar Science, 2(1), 55.

Rishbeth, H., & Williams, P. J. S. (1985). The EISCAT ionospheric radar-The system and its early results. Quarterly Journal of the Royal Astronomical Society, 26, 478.

Roble, R. G., & Ridley, E. C. (1994). A thermosphere – ionosphere – mesosphere – electrodynamics general circulation model (TIME-GCM): Equinox solar cycle minimum simulations (30 – 500 km). Geophysical Research Letters, 21(6), 417.

Schunk, R., & Nagy, A. (2009). Ionospheres: physics, plasma physics, and chemistry. Cambridge university press.

Shindin, A. V., Grach, S. M., Klimenko, V. V., Nasyrov, I. A., Sergeev, E. N., Beletski, A. B., ... & Gumerov, R. I. (2015). The 630 nm and 557.7 nm airglow during HF ionosphere pumping by the SURA facility radiation for pump frequencies near the fourth electron gyroharmonic. Radiophysics and Quantum Electronics, 57(11), 759.

Shiokawa, K., Katoh, Y., Satoh, M., Ejiri, M. K., Ogawa, T., Nakamura, T., ... & Wiens, R. H. (1999). Development of optical mesosphere thermosphere imagers (OMTI). Earth, planets and space, 51(7), 887.

Shpynev, B. G., Pancheva, D., Muhtarov, P., Kurkin, V. I., Ratovsky, K. G., Chernigovskaya, M. A., Belinskaya A. Yu., & Stepanov, A. E. (2014). Aeronomic effects of sudden stratospheric warming in January 2009 and their influence on the ionosphere. Study of the Earth from space, (3), 3. (In Russian)

Singer, W., Bremer, J., Hoffmann, P., Manson, A. H., Meek, C. E., Schminder, R., Kürschner D., Portnyagin Yu. I., Makarov N. A., Muller H. G., Kazimirovsky E. S., & Clark, R. R. (1994). Geomagnetic influences upon tides – winds from MLT radars. Journal of Atmospheric and Terrestrial Physics, 56(10), 1301.

Smertin, V., & Namgaladze, A. (1978). Comparison of the day and night effects of internal gravity waves in the F2 region of the mid-latitude ionosphere. Geomagnetism and Aeronomy, 18, 90. (In Russian)

Sokolov, S. N. (2011). Magnetic storms and their effects in the lower ionosphere: Differences in storms of various types. Geomagnetism and Aeronomy, 51(6), 741.

Solovʹev, I. A. (2000). Satellite navigation systems. Eco-Trends. (in Russian)

Somsikov, V. M. (2011). Solar terminator and dynamic phenomena in the atmosphere: A review. Geomagnetism and Aeronomy, 51(6), 707.

Song, Q., Ding, F., Wan, W., Ning, B., Liu, L., Zhao, B., Li, Q, & Zhang, R. (2013). Statistical study of large-scale traveling ionospheric disturbances generated by the solar terminator over China. Journal of Geophysical Research: Space Physics, 118(7), 4583.

Spilker, J. J., & Parkinson, B. W. (1996). Overview of GPS operation and design. Global Positioning System: Theory and applications., 1, 29.

Stankov, S. M., Bergeot, N., Berghmans, D., Bolsée, D., Bruyninx, C., Chevalier,

J. M., ... & West, M. J. (2017). Multi-instrument observations of the solar eclipse on 20 March 2015 and its effects on the ionosphere over Belgium and Europe. Journal of Space Weather and Space Climate, 7, A19.

Stepanov, A. E., Philippov, L. D., & Ratovsky, K. G. (2014). Traveling ionospheric disturbances according to the data of vertical sounding of the ionosphere in northeastern Russia. Natural resources of the Arctic and Subarctic, 1 (73).

Stubbe, P., Kopka, H., Rietveld, M. T., Frey, A., Høeg, P., Nielsen, E., ... & Holt, O. (1985). Ionospheric modification experiments with the Tromsø heating facility. Journal of atmospheric and terrestrial physics, 47(12), 1151.

Suslov, A. I., Yerohin, N. S., Mikhailovskaya, L. A., Arteha, S. N., & Gusev, A. A. (2017). Modeling the passage of large-scale IGWs from the troposphere to the ionosphere. Modern problems of remote sensing of the Earth from space, 14(5),

(In Russian)

Themens, D. R., Jayachandran, P. T., Langley, R. B., MacDougall, J. W., & Nicolls, M. J. (2013). Determining receiver biases in GPS-derived total electron content in the auroral oval and polar cap region using ionosonde measurements. GPS solutions, 17(3), 357.

Tsugawa, T., Saito, A., & Otsuka, Y. (2004). A statistical study of large-scale traveling ionospheric disturbances using the GPS network in Japan. Journal of Geophysical Research: Space Physics, 109(A6).

Tsugawa, T., Otsuka, Y., Coster, A. J., & Saito, A. (2007). Medium-scale traveling ionospheric disturbances detected with dense and wide TEC maps over North America. Geophysical Research Letters, 34(22).

Tumanova, Yu. S., Andreeva, E. S., & Nesterov, I. A. (2016). Observations of the ionospheric trough over Europe at different levels of geomagnetic disturbance according to radio tomography data. Scientific Notes of the Physics Faculty of Moscow University, (3), 163906.

Uryadov, V. P., Kolchev, A. A., Vybornov, F. I., Shumaev, V. V., Egoshin, A. I., & Chernov, A. G. (2016). Ionospheric effects of a solar eclipse of March 20, 2015 on

oblique sounding paths in the Eurasian longitudinal sector. Radiophysics and Quantum Electronics, 59(6), 431.

Vadas, S. L., & Fritts, D. C. (2005). Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity. Journal of Geophysical Research: Atmospheres, 110(D15).

Vadas, S. L., & Fritts, D. C. (2006). Influence of solar variability on gravity wave structure and dissipation in the thermosphere from tropospheric convection. Journal of Geophysical Research: Space Physics, 111(A10).

Vadas, S. L. (2007). Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources. Journal of Geophysical Research: Space Physics, 112(A6).

Vadas, S. L., & Liu, H. L. (2009). Generation of large-scale gravity waves and neutral winds in the thermosphere from the dissipation of convectively generated gravity waves. Journal of Geophysical Research: Space Physics, 114(A10).

Vadas, S. L., & Nicolls, M. J. (2009). Temporal evolution of neutral, thermospheric winds and plasma response using PFISR measurements of gravity waves. Journal of Atmospheric and Solar-Terrestrial Physics, 71(6-7), 744.

Verhulst, T. G., Sapundjiev, D., & Stankov, S. M. (2016). High-resolution ionospheric observations and modeling over Belgium during the solar eclipse of

March 2015 including first results of ionospheric tilt and plasma drift measurements. Advances in Space Research, 57(11), 2407.

Vierinen, J., Kero, A., & Rietveld, M. T. (2013). High latitude artificial periodic irregularity observations with the upgraded EISCAT heating facility. Journal of Atmospheric and Solar-Terrestrial Physics, 105, 253.

Vlasov, A., Kauristie, K., Kamp, M., Luntama, J. P., & Pogoreltsev, A. (2011). A study of traveling ionospheric disturbances and atmospheric gravity waves using EISCAT Svalbard Radar IPY-data. Annales Geophysicae, 29(11), 2101.

Wilson, B. D., Mannucci, A. J., & Edwards, C. D. (1995). Subdaily northern hemisphere ionospheric maps using an extensive network of GPS receivers. Radio Science, 30(3), 639.

Wu, Y. W., Liu, R. Y., Zhang, B. C., Wu, Z. S., Hu, H. Q., Zhang, S. R., Zhang, Q. H.,

Liu J. M., & Honary, F. (2013). Multi-instrument observations of plasma features in the Arctic ionosphere during the main phase of a geomagnetic storm in December 2006. Journal of Atmospheric and Solar-Terrestrial Physics, 105, 358.

Xu, G. (2007). GPS: Theory, Algorithms and Applications. Berlin, Springer.

Yasyukevich, Y. V., Zakharov, V. I., Kunitsyn, V. E., & Voeikov, S. V. (2015). The response of the ionosphere to the earthquake in Japan on March 11, 2011 as estimated by different GPS-based methods. Geomagnetism and aeronomy, 55(1), 108.

Yerohin, N. S., Mikhailovskaya, L. A., & Shalimov, S. L. (2007). Passage of large-scale internal gravity waves to ionospheric heights through wind structures in the lower and middle atmosphere. Geophysical research, (7), 53. (in Russian)

Yiğit, E., & Medvedev, A. S. (2009). Heating and cooling of the thermosphere by internal gravity waves. Geophysical Research Letters, 36(14).

Zalizovski, A. V., Kashcheiev, A. S., Kashcheiev, S. B., Koloskov, A. V., Lisachenko, V. N., Paznukhov, V. V., ... & Yampolski, Y. M. (2018). A prototype of a portable coherent ionosonde. Space Science and Technology, 24(3).

Zhang, S. P., Goncharenko, L. P., Salah, J. E., Roble, R. G., & Shepherd, G. G. (2003). Climatology of neutral winds in the lower thermosphere over Millstone Hill (42.6 N) observed from ground and from space. Journal of Geophysical Research: Space Physics, 108(A1).

Zhang, S. D., Yi, F., & Hu, X. (2004). MF radar observation of mean wind and tides of winter mesopause (80 – 98km) region over Wuhan (30° N, 114° E). Journal of atmospheric and solar-terrestrial physics, 66(1), 15.

Дата публікації
2021-06-23
Як цитувати
Panasenko, S., Aksonova, K., & Kotov, D. (2021). Characteristics of traveling ionospheric disturbances from incoherent scatter data. МОНОГРАФІЯ. https://doi.org/10.36074/PaAkKo.monograph-2021
Розділ
Природничі науки